bauratgeber24.de   Blog zum gesunden Bauen und Wohnen


Bauratgeber24  |  Sanierungskosten  |  Bauideen  |  Download  |  Impressum  |  Datenschutzerklärung
Artikel im Blog

Alle Beiträge


Baustoffkennwerte
Gewünschten Baustoff eingeben

  

Faching., Dipl.-Ing.oec., Ing.oec., Ing. Peter Rauch PhD
Peter Rauch PhD
Dipl.-Ing.oec., Ing.oec., Ing.
Es gibt viele Bauratgeber, welche im Auftrag oder für das System arbeiten, aber nicht für den freien Menschen.
Subscribe



Archives
  • März 2024
  • September 2023
  • August 2023
  • Juli 2023
  • Juni 2023
  • Mai 2023
  • Februar 2023
  • Januar 2023
  • Dezember 2022
  • November 2022
  • Oktober 2022
  • September 2022
  • August 2022
  • Juli 2022
  • Juni 2022
  • Mai 2022
  • April 2022
  • März 2022
  • Februar 2022
  • Januar 2022
  • November 2021
  • August 2021
  • Juni 2021
  • Mai 2021
  • April 2021
  • März 2021
  • Februar 2021
  • Dezember 2020
  • November 2020
  • Oktober 2020
  • August 2020
  • März 2020
  • Februar 2020
  • Dezember 2019
  • November 2019
  • Oktober 2019
  • September 2019
  • August 2019
  • Juli 2019
  • Juni 2019
  • Mai 2019
  • April 2019
  • Februar 2019
  • Januar 2019
  • Dezember 2018
  • November 2018
  • Juli 2018
  • Juni 2018
  • Mai 2018
  • April 2018
  • März 2018
  • Februar 2018
  • Januar 2018
  • Dezember 2017
  • November 2017
  • Oktober 2017
  • September 2017
  • August 2017
  • Juli 2017
  • Juni 2017
  • Mai 2017
  • April 2017
  • März 2017
  • Februar 2017
  • Januar 2017
  • Dezember 2016
  • November 2016
  • Oktober 2016
  • September 2016
  • August 2016
  • Juli 2016
  • Juni 2016
  • April 2016
  • März 2016
  • Februar 2016
  • Januar 2016
  • Dezember 2015
  • Oktober 2015
  • September 2015
  • Juli 2015
  • Juni 2015
  • April 2015
  • März 2015
  • Februar 2015
  • Januar 2015
  • Dezember 2014
  • November 2014
  • Oktober 2014
  • September 2014
  • August 2014
  • Juli 2014
  • Juni 2014
  • Mai 2014
  • April 2014
  • Februar 2014
  • Januar 2014
  • Dezember 2013
  • November 2013
  • Oktober 2013
  • September 2013
  • August 2013
  • Juli 2013
  • Juni 2013
  • Mai 2013
  • April 2013
  • März 2013
  • Februar 2013
  • Januar 2013
  • Dezember 2012
  • November 2012
  • Oktober 2012
  • September 2012
  • August 2012
  • Juli 2012
  • Juni 2012
  • Mai 2012
  • April 2012
  • März 2012
  • Februar 2012
  • Januar 2012
  • Mai 2011
  • Dezember 2010
  • Oktober 2010
  • August 2010
  • Juli 2010
  • Juni 2010
  • März 2010
  • Februar 2010
  • Dezember 2009
  • November 2009
  • Oktober 2009
  • November 2007
  • September 2007
  • August 2007
  • Juli 2007
  • April 2007
  • März 2007
  • Februar 2007
  • Januar 2007
  • November 2006
  • Juni 2006
  • Februar 2006
  • September 2005
  • August 2005
  • Juli 2005
  • Juni 2005
  • Februar 2005
  • Januar 2005
  • August 2004
  • Mai 2003
  • April 2003

  • Altbausanierung Badezimmer Dachgeschoss Energiekosten Energiepolitik Energie sparen Energiesparen Energiewende Fachwerk Globaltemperatur Grundstück Holz Immobilien Kaminofen Klima klimawandel Luftfeuchtigkeit Stromkosten treibhauseffekt Umzug
    Meta
    Anmelden

    Сильнейшая защита от всего негатива и опасностей!


    Archive for Februar, 2010

    Die Tauwasserbildung und die Durchfeuchtung der Bauteile bei älteren massiven Gebäuden Teil 1

    Posted by Rauch on 19th Februar 2010

    Die künftigen Bauaktivitäten verlagern sich immer mehr in den Bereich der Modernisierung und Erhaltung der vorhandenen Bausubstanz. Daher wird bei diesem Beitrag bei der Betrachtung der Feuchtigkeitsproblematik der Schwerpunkt auf älter Gebäude mit Ziegelmauerwerk gesetzt. Im Verlauf ihrer Standzeit traten unterschiedliche Feuchteeinflüsse auf. Die dabei auftretenden Feuchtigkeitstransportprozesse, wie die Wasserdampfdiffusion oder kapillare Wasserleitung werden durch den Feuchtegrad, die Feuchteverteilung in der jeweiligen Baustoffstruktur, dem Sorptionsverhalten sowie von den Schichtgrenzen innerhalb der massiven Konstruktion bestimmt.

    In allen kapillarporösen Bauwerksteilen stellt sich allmählich ein praktischer und rechnerischer Feuchtegehalt als Durchschnittswert ein. Maßgebend sind die klimatischen Gegebenheiten und die Zellstruktur des Stoffes. Zu den Feuchtigkeitstransportprozessen im Mauerwerk und ihre Speicherung in den unterschiedlichen Baustoffstrukturen gibt es zahlreiche Publikationen, die sowohl Untersuchungen aber auch Berechnungsmethoden des gekoppelten Wärme- und Feuchtetransportes in den Bauteilen zum Inhalt haben.[1, 2, 3, 4, 5] Bei der gespeicherten Feuchtigkeit in einer Außenwand handelt es sich um einen ständig veränderlichen Prozess. Es ist daher schwierig, den durchschnittlichen Feuchtegehalt anzugeben. Die außenklimatischen Bedingungen, wie Standort an der Küste oder im Binnenland, die Beanspruchung durch Schlagregen sowie die Jahreszeit wirken hier entscheidend ein, sodass bei gleichem Mauerwerk eines Gebäudes je Ausrichtung vollkommen unterschiedliche Feuchteverteilungen vorliegen können und sich so zusätzlich auf das Wärmeverhalten des Gebäudes auswirken.

    Trifft ein Wasser-Dampf-Gemisch (Luft) auf eine weniger warme Bauteiloberfläche auf und die Taupunkttemperatur der Luft wird unterschritten, so bildet sich auf einer glatten Oberfläche ein dünner Feuchtigkeitsfilm oder Wassertropfen. Da sich während der Standzeit der Gebäude ständig die Nutzung ändert, sollte die Innenscheibe der Fenster als kühlste Fläche erhalten werden. [6] Hier kann sich sichtbar Kondensat ansammeln, ohne größere Schäden zu verursachen. Gerade dieser wichtige Gesichtspunkt wird bei der Sanierung der älteren Gebäude nicht beachtet. Durch den Austausch der Kastenfenster durch Isolierverglasung mit einem U-Wert 1,3 W/m2K und besser verlagert sich die kühlste Oberfläche in die Innenecken und über den Fußboden der Außenwände, siehe Beispiel Bild 2.

    Eigene Messungen der Oberflächentemperaturen an verschiedenen Außenwänden zeigen, dass die Temperatur über dem Fußboden circa 3 K niedriger als 1 m höher ist. Grundlage für die Bewertung einer Konstruktion sind daher die Temperaturen im Wandwinkel und des Wandabschnitts über den Fußboden. Diese punktuelle Außenwandecke wird durch einen Wärmedurchgangskoeffizienten charakterisiert. Zur Ermittlung des Wertes ist eine 3-D-Berechnung des zu beurteilenden Anschlusses sowie eine 2-D-Berechnung für die linearen Wärmebrücken der Bauteilflächen, die sich dreidimensional treffen erforderlich. Ebenso wie der u-Wert (linearer Wärmedurchgangskoeffizient), welcher den zusätzlichen Wärmestrom im Bereich einer Wärmebrücke im Vergleich zum ungestörten Bauteil angibt, besitzt diese Größe nicht immer Aussagekraft. [7] Die Berechnungen dienen dem wärmetechnischen Nachweis, um zusätzliche Verluste an Außenwandwinkeln zu erfassen. [8, 9, 10]

    Länger anhaltende Tauwasserniederschläge können zu Feuchteschäden führen, die einmal zur Herauslösung gebundener Salze in den Baustoffen führen, aber auch eine Schimmelpilzbildung verursachen und günstige Wachstumsbedingungen für Holz zerstörende Pilze und Insekten bieten.
    Besonders betroffen sind hier Lagerhölzer und die Dielung über einer Kappe im Erdgeschoss (siehe Bild 1), die Balkenköpfe im Außenmauerwerk und Fachwerkkonstruktionen. Wobei für eine biologische Schädigung langfristig bereits niedrigere Feuchten im Mauerwerk ausreichen.
    Es tritt aber auch Tauwasser an Baustoffen mit außerordentlich großem Wärmespeichervermögen auf, wie zum Beispiel bei Schwerbeton. Das liegt in diesem Fall nicht an der fehlenden Wärmedämmeigenschaft, sondern an einen großen Wärmeeindringkoeffizienten b und die geglättete Betonoberfläche nimmt keine Feuchtigkeit auf. In diesem Fall ist eine diffusionsoffene Beschichtung anzubringen, zum Beispiel eine Raufasertapete oder Kork. Diffusionsdichte Beschichtungen, wie zum Beispiel Styroporplatten für die Zimmerdecken, verstärken diesen Effekt, sodass dann zwischen den Fugen der Platten eine starke Tauwasserbildung entsteht und durch eine Schimmelpilzbildung gekennzeichnet wird.
    Der Feuchteschutz nach DIN 4108-07 ist darauf gerichtet, Schäden an Bauteilen zu vermeiden sowie einer Beeinträchtigung des Wärmeschutzes entgegenzuwirken. Dazu ist

    – die Tauwassermenge im Bauteilinneren zu begrenzt,
    – eine kritische Oberflächenfeuchte und
    – das Eindringen von Schlagregen zu vermeiden.

    Befindet sich Wasser an der Bauteiloberfläche, so kann dieses durch den jeweiligen Baustoff kapillar oder auch durch Diffusion aufgenommen werden. Dabei wird die Richtung der Diffusion von dem Konzentrationsgefälle der absoluten Luftfeuchte bestimmt. Sie ist nicht abhängig von der Richtung des Wärmestroms, sie kann dieser entgegengesetzt gerichtet sein. Der Wärmestrom folgt dem Temperaturgefälle und der Dampfdruck dem Dampfdruckgefälle. Im Winter ist die absolute Feuchtigkeit der kalten Außenluft geringer, daher sind der Wärme- und der Dampfstrom nach außen gerichtet.[10, 11]

    „In Baustoffen mit freiem Wasser in den Poren kann dabei der Wasserdampfdiffusionsstrom ins Freie erheblich größer sein als die pro Zeiteinheit an der Innenwandoberfläche absorbierten Wassermengen.“ Der Wasserdampfdiffusionsprozess entzieht so den Schimmelpilzen das für das Wachstum erforderliche freie Wasser. „Die publizierten Ergebnisse der Laboruntersuchungen widerlegen nicht die Annahme, dass Schimmelpilzbildung auf der raumseitigen Oberfläche der Außenbauteile von Wohnungen in erster Linie von Tauwasserniederschäden herrührt. Ob Wasser aus einem Sorptionsvorgang für das Wachstum von Schimmelpilzen auf Bauteiloberflächen verantwortlich sein kann, ist ungeklärt.“ Es gibt bisher keine Angaben, ob sich die Laborergebnisse auf die realen Verhältnisse in Wohnungen übertragen lassen. [12] Ein Beispiel stellt das Bild 2 dar, wo eine Tauwasser- und Schimmelpilzbildung im Wandeck auf der Raufasertapete erfolgte. Hier liegt nicht nur eine niedrige Oberflächentemperatur vor, sondern der Wassertransportprozess wird durch die Dispersionsfarbe auf der Tapete und eventuell auch durch die Farbbeschichtung auf der Außenseite behindert. Die Feuchteerhöhung erfolgt aber auch am Auflager des Streichbalkens der Holzbalkendecke, die meist eine höheren Schädigung durch Holz zerstörende Insekten oder Pilze haben.

    Bereits die DIN 4108-5 (1981) lies im Punkt 11.2.4. als Alternative zum Glaser-Verfahren das Berechnungsverfahren mit Monatsmittelwerten nach JENISCH zu. Dieses Verfahren wurde weiterentwickelt und ist in der DIN EN ISO 13788 (2001) aufgenommen und gilt als teilweiser Ersatz für die DIN 4108-3 (2001). Es gelten die gleichen Gesetzmäßigkeiten der Dampfdiffusion. Es wird mit Monatsmittelwerten gerechnet und eine Feuchtebilanz für einen Jahreszyklus aufgestellt. Mit dieser Berechnung treten innerhalb mehrschichtiger Außenwandkonstruktionen beheizter Gebäude geringereTauwassermengen auf. [13] Diese günstigeren bauphysikalischen Werte in Bezug der rechnerischen Tauwasserbildung und der Verdunstungsmenge resultieren aus dem gegenwärtigen etwas höheren Jahrestemperaturverlauf. Es ist jedoch zu beachten, dass ein Gebäude nicht nur 20 Jahre steht, sondern mehrere Jahrhunderte alt werden kann. Vergleicht man nur die letzten 150 Jahre, so werden größere Differenzen der durchschnittlichen Jahrestemperatur deutlich. [14] Nach Abklingen der gegenwärtigen höheren Sonnenaktivitäten [15, 16, 17] können durchaus in den nächsten Jahren wieder niedrigere Jahrestemperaturen vorliegen. Konstruktionen, die unter heutigen durchschnittlichen Jahrestemperaturen tauwasserfrei berechnet werden, können dann versagen. Eine Berechnung und bauseitige Umsetzung auf der Grundlage der gegenwärtigen Erhöhung der Jahrestemperatur ist daher als sehr bedenklich zu werten. Theoretisch berechnete wasserfreie Konstruktionen müssen daher nicht über den gesamten Lebenszyklus eines Gebäudes gelten.

    Die Auswertung eigner Untersuchungen älterer Mehrfamilienhäuser, vorwiegend aus der Gründerzeit, zeigen bei 4477 Deckenbalkenköpfen einen durchschnittlichen Schädigungsgrad von 23,8 % durch Holz zerstörende Insekten und Pilze. Dabei wurden sehr unterschiedliche Schädigungsgrade festgestellt, die im Zusammenhang mit der Feuchte im Wandquerschnitt standen. Die Auswertung erfolgte nach Himmelsrichtung und der Stärke der Außenwand. In den unteren Etagen liegt die höchste Schädigung vor. Damit kann die bisherige Auffassung, dass die Balkenköpfe im schmaleren Mauerwerk

    eine größere Schädigung haben, nicht bestätigt werden. Die Auswertung zeigt, dass bereits eine geringe Erhöhung der Holzfeuchte von 1,4 % durchschnittlich die Schädigung an den Balkenköpfen um 4 % auf 25 % ansteigt. Das entspricht einem Anstieg der relativen Luftfeuchte von 7 %. Ebenso liegt eine Schädigung der tragenden Holzkonstruktion auf der südlichen Fassade niedriger und beträgt circa 60 % gegenüber den auf der Nordseite. Durch Anobien wurden auf der südlichen Fassade 131 und auf der nördlichen Fassade 212 Deckenbalken geschädigt. Damit wird der positive Einfluss auf die Trocknung des Mauerwerkes und der Balkenköpfe durch die Solarstrahlung deutlich. Die Fassaden hatten mehrheitlich noch den ursprünglichen hydraulischen Kalkaußenputz oder eine Klinkerfassade. Aber auch bei der Klinkerfassade konnte eine deutlich höhere Schädigung festgestellt werden, die etwa um 50 % höher als bei einer verputzten Fassade ist. Um die mögliche Schädigung an den Balkenköpfen zu vermeiden, muss somit ein diffusionsoffener Schichtaufbau der Außenwand vorliegen.

    Die Larven der Holz zerstörenden Insekten, zum Beispiel Anobium punctatum, haben noch Fraßaktivitäten bei einer Holzfeuchte von 8 bis 10 %, die eng an die Temperatur gekoppelt sind. Bei niedrigen Temperaturen liegt keine beziehungsweise geringe Fraßaktivität durch Anobien vor. Bei einem nachtäglich angebrachten Wärmeverbundsystem werden günstigere Lebensbedingungen für Holz zerstörende Insekten geboten. Durch die zusätzlichen Grenzschichten oder gar Sperrschichten kommt es zur geringen Erhöhung der durchschnittlichen Feuchte im Wandquerschnitt. Die durchschnittliche Temperatur wird erhöht und damit günstigere Temperaturbereiche für das Wachstum der Insekten über das gesamte Jahr geboten. Ebenso wird der positive Trocknungseffekt durch die Solarstrahlung vollständig unterbunden. Bei einer nachträglichen energetischen Sanierung von Gebäuden mit tragenden Holzkonstruktionen sind die feuchtetechnischen Veränderungen zu berücksichtigen.

    Eine zulässige Feuchteerhöhung im Wandquerschnitt, wie sie in der DIN 4108 als Bedingung genannt wird, ist für ein älteres Mehrfamilienhaus mit Holzbalkendecken nicht tolerierbar und widerspricht den Regeln der Baukunst.

    Der Schädigungsgrad an den Holzbalkenköpfen im Außenmauerwerk hängt stark von der Feuchte im Wandquerschnitt ab. Die Normen gehen von der Annahme konstanter Stoffeigenschaften, einer abgetrockneten Einbaufeuchte sowie von einer Feuchtigkeitseinwirkung über das Innen- und Außenklima aus. „Rechenwerte der Wärmeleitzahl in DIN 1048 Teil 4 berücksichtigen durchschnittliche Ausgleichfeuchten.“[6]

    Thermische und hygrische Simulationsrechnungen zur Ermittlung der Feuchteverteilung in Bauteilen unter natürlichen Randbedingungen auf der Grundlage des Glaserverfahrens sind kritisch zu bewerten. In einem Untersuchungsbericht warnt HAUSER mit folgendem Hinweis „Der in Ansatz gebrachte Wassertransport in den Bauteilen berücksichtigt allein die Wasserbewegung infolge von Diffusion.

    Andere Transportphänomene, die wie die Kapillarleitung den Feuchtetransport dominieren können, bleiben unberücksichtigt. Auch die von den Materialeigenschaften abhängige Wasserspeicherfähigkeit wird nicht in Ansatz gebracht. Deshalb ist es mit dem Nachweisverfahren nicht möglich, Rückschlüsse auf die sich in Bauteilen ansammelnde Wassermenge zu ziehen und realistische Wassergehalte zu ermitteln.“[18] EICHLER/ARNDT schrieben hierzu „Enthält die berechnete Konstruktion Schichten aus Ziegeln, Gips, Mörtelputz, Leichtbeton, Holzbeton, Holz oder andere feuchteleitfähigen Stoffen, so können kapillare Wassertransporte eine negative Feuchtebilanz in das Gegenteil verkehren, unter ungünstigen Radbedingungen aber auch noch kritischer machen… Wasserbewegungen entziehen sich jedoch einer Berechnung, man kann nur ihre Tendenz zu erkennen suchen und ihre Auswirkung abschätzen.“[10]

    Mit den Berechnungsverfahren für Wärme- und Feuchtetransportprozesse können gegenwärtig keine ausreichenden Rückschlüsse auf realistische Wassergehalte im Wandquerschnitt gezogen werden, die Schlussfolgerungen auf eine höhere Gefährdung der Balkenköpfe durch Holz zerstörende Insekten als Folge einer Tauwasserbildung zu lassen.

    Prof. RNDr. Jaroslav Římal Dr.Sc. und Dipl.-Ing.oec., Ing. Peter Rauch

    Literatur:
    [1] Kießl, Kurt; Kapillare und dampfförmiger Feuchtetransport in mehrschichtigen Bauteilen.
    Rechnerische Erfassung und bauphysikalische Anwendung, Dissertation, Universität
    Gesamthochschule Essen 1983
    [2] Häupl, Peter; Stopp, Horst; Feuchtetransport in Baustoffen und Bauwerksteilen Dissertation, Technische Universität Dresden 1987
    [3] Pedersen, C.R.; Combined heat and moisture transfer in building construction, Dissertation Technische Universität Dänemark, Lyngby 1998
    [4] Künzel, Hartwig M.; Verfahren zur ein- und zweidimensionalen Berechnung des gekoppelten Wärme- und Feuchtetransport in Bauteilen mit einfachen Kennwerten, Dissertation 1994 , Universität Stuttgart
    [5] Bednar, T.; Beurteilung des feuchte- und wärmetechnischen Verhaltens von Bauteilen und Gebäuden Weiterentwicklung der Meß- und Rechenverfahren, Dissertation 2000, Technische Universität Wien
    [6] Mehlhorn, Gerhard; Der Ingenieurbau, Grundwissen, Bauphysik Brandschutz 1996 Berlin Ernst & Sohn, S. 46, 57, 78, 85, 90, 91
    [7] Willems, Wolfgang; Schild, Kai; Wärmebrücke: Berechnung – Bilanzierung – Vermeidung S.488-490 in: Bauphysik Kalender 2007, Ernst & Sohn
    [8] Jaroslav Římal, Marcus Hermes; Die energiesparende Gebäudehülle, GFF 12/2006, S. 28ff
    [9] Königwinter, Peters; Wärmebrücken im Mauerwerksbau beachten, Baumarkt 10/99 S. 10-15
    [10] Eichler, Friedrich; Arndt, Horst; Bautechnischer Wärme- und Feuchtigkeitsschutz 1989,Bauverlag Berlin S. 92-102, 223
    [11] Arendt, Claus; Seele, Jörg; Feuchte und Salze in Gebäude, Verlagsanstalt Alexander Koch; 2000, S. 12-16, 51
    [12] Jenisch, Richard; Stohrer, Martin; Tauwasserschäden 2. Aufl. 2001, Fraunhofer IRB-Verlag, S. 26-27
    [13] Weise, Manfred; „Bauphysik und Klimawandel“; Änderungen im Holzschutz, Vortrag auf der 14. Quedlinburger Holzbautagung 27.-28.3.2008, S. 6-9
    [14] Artur B. Robinson; Noha E. Robinson, Willie, Soon; Environmental Effects of Increased Atmospheric Carbon Dioxide, Journal of American Physicians and Surgeons (2007)12, 79-90
    [15] Chabibullo Abdussamatow; Mars gibt Hinweise auf künftige Kaltzeit auf der Erde, Russische Informations- und Nachrichtenagentur RIA NOVOSTI 10. Oktober 2007
    http://de.rian.ru/science/20071010/83356266.html
    [16] Usoskin, Ilya G. , S. K. Solanki, M. Schüssler, K. Mursula, K. Alanko (2003) Millenium Scale Sunspot Reconstruction: Evidence For an Unusually Active Sun Since the s.- Phys.Rev.Lett. 91 (2003) 211101
    [17] Lassen, K. Solar Activity and Climate – Long-term Variations in Solar Activity and their Apparent Effect on the Earth’s Climate.- Danish Meteorological Institute, Solar-Terrestrial Physics Division, Lyngbyvej,100, DK-2100 Copenhagen (2), Denmark.
    [18] Hauser, Gerd: Forschungsvorhaben Auswirkungen der neuen europäischen Norm EN ISO 13788 „Raumseitige Oberflächentemperatur zur Vermeidung kritischer Oberflächenfeuchte und Tauwasserbildung im Bauteilinneren auf Konstruktion und Holzschutz von Außenbauteilen in Holzbauart“, Ingenieurbüro

    Posted in Bauen und Wohnen | Kommentare deaktiviert für Die Tauwasserbildung und die Durchfeuchtung der Bauteile bei älteren massiven Gebäuden Teil 1

    Feuchtigkeit als Ursache für biologische Bauschäden

    Posted by Rauch on 4th Februar 2010

    Auszug

    Biologische Schäden an Bauteilen treten nur dann auf, wenn genügend Feuchtigkeit, eine geeignete Nahrung und ein optimaler Temperaturbereich vorliegen. Oft sind sehr schmale Grenzen zwischen Schadenfreiheit und Schädigung zu beobachten. Eine höhere Feuchtigkeit bei niedriger Temperatur muss nicht zwangsweise zu einer Schädigung führen. Dagegen kann bei gleicher oder sogar niedrigerer relativer Feuchte aber bei Zimmertemperatur eine biologische Schädigung auftreten. Dieser Zusammenhang wird in einem verallgemeinerten

    Neben dem oft kritisierten eindimensionalen Glaser-Verfahren, welches Kapillartransporte, Sorptionseigenschaften und Einflüsse realer baulicher und klimatischer Randbedingungen nicht berücksichtigt, gibt es zahlreiche Modellansätze, die mehrdimensionale und instationäre Transportvorgänge in kapillar porösen Baustoffen berechnen. Die thermodynamisch miteinander gekoppelten Wärme- und Feuchtetransportvorgänge finden gleichzeitig statt und beeinflussen sich gegenseitig. Enthalpieströme der Feuchtefelder sowie die Phasenänderung des Wassers beeinflussen die Wärmespeicherfähigkeit sowie die Wärmeleitfähigkeit und somit den Wärmetransport. In der Literatur werden verschieden numerische Berechnungsverfahren beschrieben. [1] [7]
    So werden bei der Berechnung des Wärmetransportes bei KÃœNZEL die „…Wärmeleitung und Enthalpieströme durch Feuchtebewegung mit Phasenveränderung sowie die kurzwellige Sonnenstrahlung berücksichtigt.“ [8]

    Im Forschungsbericht zur hygrothermischen Untersuchung an Balkenköpfen … kommt man zu folgender Schlussfolgerung „Grundsätzlich bleibt festzustellen, dass bei der numerischen Simulation gekoppelter Temperatur- und Feuchtefelder in Baustoffen und Bauelementen derzeit die realitätsnahe Kopplung strömungstechnischer Vorgänge mit den Temperaturvorgängen in Materialien außerordentlich große Schwierigkeiten bereitet. Eine praktikable Schnittstelle vorhandener Software für beide Bereiche (z. B. „DELPHIN“, „WUFI“-„Fluent“) existiert nicht.

    Quelle:
    [1]Kießl, Kurt; Kapillare und dampfförmiger Feuchtetransport in mehrschichtigen Bauteilen. Rechnerische Erfassung und bauphysikalische Anwendung, Dissertation, Universität Gesamthochschule Essen 1983

    [2] Häupl, Peter; Stopp, Horst; Feuchtetransport in Baustoffen und Bauwerksteilen Dissertation, Technische Universität Dresden 1987

    [3] Philip, J.R.; De Vries, D.A.; Moisture movements in porous materials under temperature gradients, Transaction American Geophysical Union, Heft 2 (1957) S. 222-232

    [4] Pedersen, C.R.; Combined heat and moisture transfer in building construction, Dissertation Technische Universität Dänemark, Lyngby 1998

    [5] Radu, A. Vornicu, T.; Zweidimensionale Berechnung der Wärmeleit- und Wasserdampfdiffusionsvorgänge in Außenbauteilen, Bauphysik, Heft 1 (1988), S. 17-23

    [6] Bednar, T.; Beurteilung des feuchte- und wärmetechnischen Verhaltens von Bauteilen und Gebäuden –Weiterentwicklung der Meß- und Rechenverfahren, Dissertation 2000, Technische Universität Wien

    [7] Anderseeon, A.; Computer programs for tow-dimensional heat, moisture air flow. Division of Building Technology, Lund, Instiute of Technology Report TVBH-3005, Schweden 1981

    [8] Künzel, Hartwig M.; Verfahren zur ein- und zweidimensionalen Berechnung des gekoppelten Wärme- und Feuchtetransport in Bauteilen mit einfachen Kennwerten, Diss 1994 , Universität Stuttgart, Fakultät Bauingenieur- und Vermessungswesen, S. 8, 64

    [9] Gnoth, Steffen; Hansel, Frank; Jurk, Kasten; Toepel, Torsten; Strangfeld, Peter; Hygrothermische Untersuchung der Balkenköpfe von Einschubdecken bei innengedämmten Außenwänden unter Einbeziehung der Heizungstechnik, Heizungstechnisch gestützte kapillaraktive Innendämmung bei Holzbalkendecken , 2003, Fraunhofer IRB Verlag, S. 104

    Posted in Allgemein | No Comments »

     
    Kosmisches Gesetz

     ©  Bauratgeber24  |  Impressum  |  Datenschutzerklärung   2/2022